Wykładnicza średnia ruchoma - EMA ZMNIEJSZAJĄCA Średnia wykładnicza średnia ruchoma - EMA 12- i 26-dniowe EMA są najpopularniejszymi krótkoterminowymi wartościami średnimi i są używane do tworzenia wskaźników takich jak średnia ruchoma rozbieżność konwergencji (MACD) i procentowy oscylator ceny (PPO). Ogólnie rzecz biorąc, EMA o długości 50 i 200 dni są wykorzystywane jako sygnały długoterminowych trendów. Handlowcy, którzy stosują analizę techniczną, uważają, że średnie ruchome są bardzo użyteczne i wnikliwe, gdy są prawidłowo stosowane, ale tworzą spustoszenie, gdy są niewłaściwie używane lub są źle interpretowane. Wszystkie średnie ruchome powszechnie stosowane w analizie technicznej są ze swej natury wskaźnikami opóźniającymi. W związku z tym wnioski wyciągnięte z zastosowania średniej ruchomej do określonego wykresu rynkowego powinny potwierdzać ruch rynkowy lub wskazać jego siłę. Bardzo często, zanim linia średniej ruchomej wskazała zmianę, która odzwierciedla znaczący ruch na rynku, optymalny punkt wejścia na rynek już minął. EMA służy do złagodzenia tego dylematu w pewnym stopniu. Ponieważ obliczenia EMA kładą większy nacisk na najnowsze dane, to przyśpieszają akcję cenową, dzięki czemu reagują szybciej. Jest to pożądane, gdy EMA jest wykorzystywana do wyprowadzenia sygnału wejścia handlowego. Interpretacja EMA Podobnie jak wszystkie wskaźniki średniej ruchomej, są one znacznie lepiej dostosowane do trendów na rynkach. Kiedy rynek jest w silnym i utrzymującym się trendzie wzrostowym. linia wskaźnika EMA będzie również wykazywać trend wzrostowy i odwrotnie w przypadku trendu spadkowego. Czujny inwestor nie tylko zwróci uwagę na kierunek linii EMA, ale także na relację szybkości zmiany z jednego paska do drugiego. Na przykład, gdy akcja cenowa silnego trendu wzrostowego zaczyna się spłaszczać i odwracać, szybkość zmian EMA z jednego paska do następnego zacznie zmniejszać się do momentu, gdy linia wskaźnika spłaszczy się, a tempo zmiany wynosi zero. Z powodu efektu opóźnienia, w tym momencie, a nawet kilku taktów wcześniej, akcja cenowa powinna już się odwrócić. Wynika z tego, że obserwowanie konsekwentnego zmniejszania tempa zmian EMA mogłoby samo w sobie służyć jako wskaźnik, który mógłby dalej przeciwdziałać dylematowi wynikającemu z opóźnionego efektu ruchomych średnich. Wspólne zastosowania EMA EMA są powszechnie stosowane w połączeniu z innymi wskaźnikami, aby potwierdzić istotne ruchy na rynku i ocenić ich ważność. W przypadku handlowców, którzy handlują rynkami bieżącymi i szybko rozwijającymi się, EMA ma większe zastosowanie. Dość często inwestorzy używają EMA w celu określenia obciążenia handlowego. Na przykład, jeśli EMA na wykresie dziennym wykazuje silny trend wzrostowy, strategia podmiotów handlujących w ciągu dnia może polegać na wymianie tylko z długiej strony na wykresie intraday. Badanie ważonej ruchomej średniej ruchomej jest najczęstszą miarą ryzyka, ale występuje w kilku smakach. W poprzednim artykule pokazaliśmy, jak obliczyć prostą zmienność historyczną. (Aby przeczytać ten artykuł, zobacz Używanie zmienności do wyznaczania przyszłego ryzyka.) Wykorzystaliśmy rzeczywiste dane o cenach akcji w Googles w celu obliczenia dziennej zmienności na podstawie 30 dni danych o stanie. W tym artykule poprawimy prostą zmienność i omówimy wykładniczą średnią ważoną średnią (EWMA). Historyczne Vs. Zmienność implikowana Najpierw podzielmy te dane na nieco perspektywy. Istnieją dwa szerokie podejścia: zmienność historyczna i domniemana (lub domniemana). Historyczne podejście zakłada, że przeszłość jest prologiem, w którym mierzymy historię w nadziei, że jest ona przewidywalna. Implikowana zmienność ignoruje historię, którą rozwiązuje ze względu na zmienność wynikającą z cen rynkowych. Ma nadzieję, że rynek wie najlepiej, a cena rynkowa zawiera, nawet w sposób dorozumiany, konsensusowy szacunek zmienności. (Aby zapoznać się z treścią tego rozdziału, zobacz Wykorzystywanie i ograniczenia zmienności). Jeśli skupimy się tylko na trzech historycznych podejściach (po lewej stronie), mają one dwa wspólne etapy: Oblicz cykl okresowych powrotów Zastosuj schemat ważenia Najpierw oblicz okresowy powrót. Jest to zwykle seria codziennych powrotów, gdzie każdy zwrot wyrażany jest w ciągłych słowach złożonych. Dla każdego dnia bierzemy dziennik naturalny stosunku cen akcji (tj. Cena dzisiaj podzielona przez cenę wczoraj, i tak dalej). Powoduje to szereg codziennych powrotów, od ui do u i-m. w zależności od tego ile dni (m dni) mierzymy. To prowadzi nas do drugiego kroku: tutaj trzy podejścia różnią się. W poprzednim artykule (Używanie Zmienności do wyznaczania przyszłego ryzyka) wykazaliśmy, że w ramach kilku akceptowalnych uproszczeń prosta wariancja jest średnią z kwadratów: Zwróć uwagę, że sumuje ona każdy z okresowych zwrotów, a następnie dzieli tę sumę przez liczba dni lub obserwacji (m). Tak więc jest to naprawdę tylko średnia kwadratowych okresowych zwrotów. Innymi słowy, każdy kwadratowy powrót ma taką samą wagę. Jeśli więc alfa (a) jest czynnikiem ważącym (konkretnie 1m), to prosta wariancja wygląda mniej więcej tak: EWMA poprawia prostą wariancję Słabością tego podejścia jest to, że wszystkie powroty przynoszą taką samą wagę. Wczorajsze (bardzo niedawne) zwroty nie mają większego wpływu na wariancję niż powrót ostatnich miesięcy. Ten problem jest rozwiązywany za pomocą ważonej ruchomą średnią z wykładnikami (EWMA), w której nowsze wyniki mają większą wagę dla wariancji. Obliczona wykładniczo średnia ruchoma (EWMA) wprowadza lambdę. który jest nazywany parametrem wygładzania. Lambda musi być mniejsza niż jeden. Pod tym warunkiem, zamiast równych wag, każdy kwadratowy zwrot jest ważony przez mnożnik w następujący sposób: Na przykład RiskMetrics TM, firma zarządzająca ryzykiem finansowym, używa lambda na poziomie 0,94 lub 94. W tym przypadku pierwsza ( ostatnia) Kwadratowy okresowy powrót ważony jest przez (1-0.94) (.94) 0 6. Kolejny kwadratowy powrót to po prostu wielokrotność lambda poprzedniej wagi w tym przypadku 6 pomnożona przez 94 5,64. Trzeci ciężar w poprzednich dniach wynosi (1-0,94) (0,94) 2 5,30. Jest to znaczenie wykładnicze w EWMA: każda waga jest mnożnikiem stałym (tj. Lambda, który musi być mniejszy niż jeden) wagi poprzedniego dnia. Zapewnia to odchylenie, które jest ważone lub stronnicze w kierunku bardziej aktualnych danych. (Aby dowiedzieć się więcej, zapoznaj się z arkuszem kalkulacyjnym Excel dotyczącym zmienności Google.) Różnicę między po prostu zmiennością a EWMA dla Google pokazano poniżej. Prosta zmienność skutecznie waży każdy okresowy zwrot o 0.196, jak pokazano w kolumnie O (mieliśmy dwa lata codziennych danych o cenach akcji, to jest 509 dziennych zwrotów i 1509 0.196). Ale zauważ, że Kolumna P przypisuje wagę 6, potem 5,64, potem 5.3 i tak dalej. To jedyna różnica między prostą wariancją a EWMA. Pamiętaj: po zsumowaniu całej serii (w kolumnie Q) mamy wariancję, która jest kwadratem odchylenia standardowego. Jeśli chcemy niestabilności, musimy pamiętać, aby wziąć pierwiastek kwadratowy z tej wariancji. Jaka jest różnica w codziennej zmienności między wariancją a EWMA w przypadku Googles? Znaczące: Prosta wariancja dała nam codzienną zmienność na poziomie 2,4, ale EWMA podawała dzienną zmienność tylko 1,4 (szczegóły w arkuszu kalkulacyjnym). Najwyraźniej wahania Googlesa ustabilizowały się ostatnio, więc prosta wariancja może być sztucznie zawyżona. Dzisiejsza wariancja jest funkcją zmiennej dni Piora Zauważ, że musieliśmy obliczyć długą serię malejących wykładniczo wag. Nie będziemy tutaj wykonywać matematyki, ale jedną z najlepszych cech EWMA jest to, że cała seria wygodnie redukuje się do rekursywnej formuły: rekursywna oznacza, że obecne odniesienia do wariancji (tj. Są funkcją wariancji z poprzedniego dnia). Możesz znaleźć tę formułę również w arkuszu kalkulacyjnym i daje ona dokładnie taki sam wynik, jak obliczenie długu. Mówi: Współczynnik wariancji (pod EWMA) jest równy wariancji z wczoraj (ważonej przez lambda) plus wczorajszy powrót do kwadratu (ważony o jeden minus lambda). Zwróć uwagę, że właśnie dodajemy dwa terminy: wczorajsze ważone odchylenie i wczorajsze ważone, kwadraty powrotu. Mimo to lambda jest naszym parametrem wygładzania. Wyższa wartość lambda (np. Podobnie jak w przypadku RiskMetrics 94) wskazuje na wolniejszy spadek w serii - w kategoriach względnych, będziemy mieć więcej punktów danych w serii i będą one spadać wolniej. Z drugiej strony, jeśli zredukujemy wartość lambda, wskazujemy na wyższą wartość zanikania: masy wypadną szybciej i, w bezpośrednim efekcie gwałtownego rozpadu, wykorzystuje się mniej punktów danych. (W arkuszu kalkulacyjnym lambda jest wejściem, więc możesz eksperymentować z jego czułością). Podsumowanie Zmienność jest chwilowym odchyleniem standardowym podstawowego i najczęściej występującego wskaźnika ryzyka. Jest to także pierwiastek kwadratowy wariancji. Możemy mierzyć wariancję historycznie lub pośrednio (implikowana zmienność). Podczas historycznego pomiaru najłatwiejszą metodą jest prosta wariancja. Ale słabość z prostą wariancją polega na tym, że wszystkie powroty mają tę samą wagę. Mamy więc klasyczny kompromis: zawsze chcemy więcej danych, ale im więcej danych mamy, tym bardziej nasze obliczenia są rozcieńczane przez odległe (mniej istotne) dane. Wartość średnia ważona wykładniczo (EWMA) poprawia się na podstawie prostej wariancji, przypisując wagę okresowym zwrotom. Dzięki temu możemy zarówno użyć dużego rozmiaru próby, jak i nadać większą wagę nowszym powrotom. (Aby obejrzeć film instruktażowy na ten temat, odwiedź Bionic Turtle.) Wygładzanie danych usuwa przypadkową zmienność i pokazuje trendy i cykliczne komponenty. Nieodłącznym elementem zbierania danych w czasie jest pewna forma losowej zmienności. Istnieją metody zmniejszania efektu anulowania z powodu losowej zmienności. Często używaną techniką w przemyśle jest wygładzanie. Technika ta, po prawidłowym zastosowaniu, bardziej wyraźnie ujawnia podstawowy trend, czynniki sezonowe i cykliczne. Istnieją dwie różne grupy metod wygładzania Metody uśredniania Metody wyrównywania wykładniczego Wykonywanie średnich jest najprostszym sposobem na wygładzenie danych Najpierw zbadamy niektóre metody uśredniania, takie jak prosta średnia wszystkich przeszłych danych. Kierownik magazynu chce wiedzieć, ile typowy dostawca dostarcza w jednostkach za 1000 USD. Heshe pobiera losowo losowo 12 dostawców, uzyskując następujące wyniki: Obliczoną średnią lub średnią danych 10. Zarządzający decyduje się wykorzystać to jako oszacowanie wydatków przeciętnego dostawcy. Czy to jest dobre czy złe oszacowanie Średni kwadrat błędu to sposób na ocenę, jak dobry jest model Obliczymy błąd średniokwadratowy. Błąd rzeczywistej wydanej kwoty minus szacowana kwota. Błąd do kwadratu jest powyższym błędem, podniesiony do kwadratu. SSE jest sumą kwadratów błędów. MSE jest średnią z kwadratów błędów. Wyniki MSE na przykład Wyniki są następujące: Błędy i błędy kwadratowe Szacunek 10 Powstaje pytanie: czy możemy użyć średniej do prognozowania dochodu, jeśli podejrzewamy pewien trend. Spojrzenie na poniższy wykres pokazuje wyraźnie, że nie powinniśmy tego robić. Średnia w równym stopniu waży wszystkie poprzednie obserwacje Podsumowując, stwierdzamy, że Prosta średnia lub średnia ze wszystkich przeszłych obserwacji jest jedynie użytecznym oszacowaniem do prognozowania, gdy nie ma tendencji. Jeśli istnieją trendy, użyj różnych szacunków uwzględniających tę tendencję. Średnia waży jednakowo wszystkie poprzednie obserwacje. Na przykład średnia z wartości 3, 4, 5 wynosi 4. Wiemy oczywiście, że średnią oblicza się, dodając wszystkie wartości i dzieląc sumę przez liczbę wartości. Innym sposobem obliczania średniej jest dodanie każdej wartości podzielonej przez liczbę wartości lub 33 43 53 1 1,3333 1,6667 4. Mnożnik 13 nazywany jest wagą. Ogólnie: bar frac suma w lewo (frac w prawo) x1 w lewo (frac w prawo) x2,. ,, left (frac right) xn. (Po lewej (frac po prawej)) są wagami i, oczywiście, sumują się do 1.
No comments:
Post a Comment